The Welfare Consequences of Regulating Amazon

Germán Gutiérrez UW Foster

July 2022, NBER SI

Many papers on BuyBox: same product, many sellers

Duracell Optimum AA Batteries with Power Boost Ingredients, 12 Count Pack Double A Battery with Long-lasting Power, All-Purpose Alkaline AA Battery for Household and Office Devices Visit the Duracell Store 26,637 ratings | 54 answered questions Amazon's Choice in AA Batteries by Duracell List Price: \$17.29 Details & FRFF Returns > You Save: \$5.42 (31%) Coupon: Save 40%: Coupon available when you select Subscribe & Save. S Best price S +

Get a \$200 Gift Card: Pay \$0.00 \$11.87 upon approval for the

(\$0.99 / Count)

(\$0.99 / Count)

√prime

(Lee and Mussolff, 2021; Raval, 2022; Lam, 2021)

Duracell Coppertop AA Batteries 28 Count Pack Double A Battery with Long-Lasting Power for Household... 28 Count (Pack of 1)

*** * * × 24.831

Energizer AA Batteries, Double A Long-Lasting Alkaline Power Batteries (32 Pack)

32 Count (Pack of 1)

★★★★ ~ 49,196

\$20¹⁴ (\$0.63/Count) \$19.13 with Subscribe & Save discount Extra \$2.00 off when you subscribe

Duracell Optimum AA Batteries, 28 Count Pack Double A Battery with Long-Lasting Power Alkaline AA...

28 Count (Pack of 1)

\$28²⁹ (\$1.01/Count)
\$26.88 with Subscribe & Save discount
Extra 40% off when you subscribe

prime FREE One-Day

Amazon Basics AA 1.5 Volt Performance Alkaline Batteries - Pack of 20

20 Count (Pack of 1)

\$9⁷¹ (\$0.49/Count)

Save more with Subscribe & Save

Extra 40% off when you subscribe

prime FREE Delivery Sat, Jul 23

This paper: many products in same category, across selling methods

Duracell Coppertop AA Batteries 28 Count Pack Double A Battery with Long-Lasting Power for Household... 28 Count (Pack of 1)

★★★★ ~ 24,831

Ships from Pale Blue
Sold by Pale Blue

Energizer AA Batteries, Double A Long-Lasting Alkaline Power Batteries (32 Pack) 32 Count (Pack of 1)

\$20¹⁴ (\$0.63/Count) \$19.13 with Subscribe & Save discount Extra \$2.00 off when you subscribe

✓prime FREE One-Day

Ships from Amazon
Sold by HixonDirect

Duracell Optimum AA Batteries, 28 Count Pack Double A Battery with Long-Lasting Power Alkaline AA... 28 Count (Pack of 1)

★★★★ × 1,573

\$28²⁹ (\$1.01/Count)
\$26.88 with Subscribe & Save discount

Extra 40% off when you subscribe

prime FREE One-Day

Ships from Amazon.com
Sold by Amazon.com

Amazon Basics AA 1.5 Volt Performance Alkaline Batteries - Pack of 20

20 Count (Pack of 1)

\$971 (\$0.49/Count)
Save more with Subscribe & Save
Extra 40% off when you subscribe

prime FREE Delivery Sat. Jul 23

Ships from Amazon.com
Sold by Amazon.com

Why?

Why?

It's fun!

Why?

- It's fun!
- Increasingly commmon

Why?

- It's fun!
- Increasingly common
- Regulatory concerns

Why?

- It's fun!
- Increasingly commmon
- Regulatory concerns

Why?

- It's fun!
- Increasingly commmon
- Regulatory concerns

PASSED H.R. 3825, THE ENDING PLATFORM MONOPOLIES ACT Prevents dominant online platforms from leveraging their monopoly power to distort or destroy competition in markets that rely on that platform.

- Emprical IO model with
 - Substitute products
 - Marketplace + reselling vertical relationships
 - Endogenous prices and fees
 - Dynamic investment incentives

Why?

- It's fun!
- Increasingly commmon
- Regulatory concerns

PASSED H.R. 3825, THE ENDING PLATFORM MONOPOLIES ACT Prevents dominant online platforms from leveraging their monopoly power to distort or destroy competition in markets that rely on that platform.

- Emprical IO model with
 - Substitute products
 - Marketplace + reselling vertical relationships
 - Endogenous prices and fees
 - Dynamic investment incentives
- Estimate model for ~150 categories

Why?

- It's fun!
- Increasingly commmon
- Regulatory concerns

PASSED H.R. 3825, THE ENDING PLATFORM MONOPOLIES ACT Prevents dominant online platforms from leveraging their monopoly power to distort or destroy competition in markets that rely on that platform.

- Emprical IO model with
 - Substitute products
 - Marketplace + reselling vertical relationships
 - Endogenous prices and fees
 - Dynamic investment incentives
- Estimate model for ~150 categories
- Run counterfactuals

Overview of model

Overview of model

Dynamic Investment Incentives

Platform sets policy variables *f* to maximize long run value:

$$\max_{\boldsymbol{f}} V(\boldsymbol{\Theta}, \boldsymbol{f}) = \Pi(\boldsymbol{\Theta}, \boldsymbol{f}) + \delta \, \tilde{V}(\boldsymbol{\Theta}, \boldsymbol{f})$$

Dynamic Investment Incentives

Platform sets policy variables *f* to maximize long run value:

$$\max_{\pmb{f}} V(\pmb{\Theta}, \pmb{f}) = \Pi(\pmb{\Theta}, \pmb{f}) + \delta \, \tilde{V}(\pmb{\Theta}, \pmb{f})$$

If continuation values (and entry) depend only on CS, SS:

$$\frac{\partial \Pi}{\partial f_m} + \underbrace{\delta \frac{\partial \hat{V}}{\partial N^b} \frac{\partial N^b}{\partial CS}}_{\gamma^c} \frac{\partial CS}{\partial f_m} + \underbrace{\delta \frac{\partial \hat{V}}{\partial N^s} \frac{\partial N^s}{\partial SS}}_{\gamma^s} \frac{\partial SS}{\partial f_m} = 0$$

Dynamic Investment Incentives

Platform sets policy variables *f* to maximize long run value:

$$\max_{\boldsymbol{f}} V(\boldsymbol{\Theta}, \boldsymbol{f}) = \Pi(\boldsymbol{\Theta}, \boldsymbol{f}) + \delta \, \tilde{V}(\boldsymbol{\Theta}, \boldsymbol{f})$$

If continuation values (and entry) depend only on CS, SS:

$$\frac{\partial \Pi}{\partial f_m} + \underbrace{\delta \frac{\partial \tilde{V}}{\partial N^b} \frac{\partial N^b}{\partial CS}}_{\gamma^c} \frac{\partial CS}{\partial f_m} + \underbrace{\delta \frac{\partial \tilde{V}}{\partial N^s} \frac{\partial N^s}{\partial SS}}_{\gamma^s} \frac{\partial SS}{\partial f_m} = 0$$

 γ^c, γ^s are state-dependent "incentive compatibility constraints":

$$\max_{\boldsymbol{f}} V(\boldsymbol{\Theta}, \boldsymbol{f}) = \Pi(\boldsymbol{\Theta}, \boldsymbol{f}) + \gamma^{c} CS(\boldsymbol{\Theta}, \boldsymbol{f}) + \gamma^{s} SS(\boldsymbol{\Theta}, \boldsymbol{f})$$

Amazon Problem

$$\begin{split} \max_{\boldsymbol{p}_j \forall j \in 1P, \tau^{\boldsymbol{v}}, \tau^{\boldsymbol{u}}} & \sum_{j \in 1P} \left(p_j - \hat{w}_j \right) s_j(\boldsymbol{p}) & \text{(reseller)} \\ & + \sum_{l \in 3P} [u_l s_l(\boldsymbol{p}) + v_l p_l s_l(\boldsymbol{p})] & \text{(marketplace)} \\ & + \gamma^{c} CS(\boldsymbol{p}) + \gamma^{s} SS(\boldsymbol{p}) & \text{(investment)} \end{split}$$

where

- $j \in \{1P,3P\}$ taken from data
- $v = \tau^{\nu} V$ and $u = \tau^{u} U$ follow observed fee policies

Key trade-offs

Price-setting FoC:

$$0 = s_{j}(\boldsymbol{p}) + \sum_{j \in 1P} (p_{k} - \hat{w}_{k}) \frac{\partial s_{k}}{\partial p_{j}}$$
 (reseller)

$$+ \sum_{l \in 3P} \left(u_{l} \frac{\partial s_{m}}{\partial p_{j}} + v_{l} p_{l} \frac{\partial s_{l}}{\partial p_{j}} \right)$$
 (marketplace)

$$+ \gamma^{c} \frac{\partial CS(\boldsymbol{p})}{\partial p_{i}} + \gamma^{s} \frac{\partial SS(\boldsymbol{p})}{\partial p_{i}}$$
 (investment)

Key trade-offs

Price-setting FoC:

$$0 = s_{j}(\boldsymbol{p}) + \sum_{j \in 1P} (p_{k} - \hat{w}_{k}) \frac{\partial s_{k}}{\partial p_{j}} \qquad \text{(reseller)}$$

$$+ \sum_{l \in 3P} \left(u_{l} \frac{\partial s_{m}}{\partial p_{j}} + v_{l} p_{l} \frac{\partial s_{l}}{\partial p_{j}} \right) \qquad \text{(marketplace)}$$

$$+ \gamma^{c} \frac{\partial CS(\boldsymbol{p})}{\partial p_{j}} + \gamma^{s} \frac{\partial SS(\boldsymbol{p})}{\partial p_{j}} \qquad \text{(investment)}$$

Fee-setting FoCs:

- Similar forces as above...
- ...but depend on (i) seller pass-through and (ii) fee structure

Data and sample

Data

- Product-level data from Keepa.com
- Estimates of sales quantities from sales rank (AMZScout)
- Fee history hand-collected from AMZ disclosures
- AMZ share = avg(category-level retail,e-commerce shares)

Sample

- ~150 subcategories exposed to Δv in 2019
- Food, Health and Baby products with prices < ~\$15

Step 1: Assign products to nests (Almagro and Manresa, 2021)

Step 2: Estimate demand parameters

$$\ln s_{jt} - \ln s_{0t} = \alpha_t p_{jt} + \zeta 1 \{Prime_{jt}\} + \mathbf{x}'_{\mathbf{j}(\mathbf{s})\mathbf{t}}\beta - \sigma' \ln \left(\mathbf{s}_{\mathbf{j}|\mathbf{g}\mathbf{t}}\right) + \mu_{\mathbf{j}} + \mu_{\mathbf{t}} + \xi_{jt}$$

141

Step 2: Estimate demand parameters

 $\ln s_{jt} - \ln s_{0t} = \alpha_t p_{jt} + \zeta 1 \{Prime_{jt}\} + \mathbf{x}'_{\mathbf{j}(\mathbf{s})\mathbf{t}}\beta - \sigma' \ln \left(\mathbf{s}_{\mathbf{j}|\mathbf{g}\mathbf{t}}\right) + \mu_{\mathbf{j}} + \mu_{\mathbf{t}} + \xi_{jt}$

	(1)	(2)	(3)	(4)	(5)
Prices	-0.02	-0.24	-0.21	-0.22	-0.22
Prime	-0.14	0.31	0.28	0.21	0.32
log(rating)	-1.14	0.07	0.05	0.02	0.02
log(sell. rating)	-0.10	0.04	0.02	0.01	0.02
log(# sell. reviews)	-0.02	0.06	0.05	0.02	0.03
$\bar{\sigma}$	0.87	0.80	0.81	0.66	0.54
Obs.	19038	19038	19038	19038	19038
Method	OLS	IVGMM	IVGMM	IVGMM	IVGMM
Prod FE	Υ	Υ	Υ	Υ	Υ
Seller FE Ins	Ν	N	Υ	Υ	Υ
Nest params	Ν	N	Ν	Υ	Υ
Time FE	N	N	N	N	Υ

Step 3: Estimate supply parameters

All authoritan

		All subcategories	
Parameter		$\gamma^{j}=0$	
	$arepsilon_{\sf own}$	-5.85	
Elasticities	Outside div, θ	0.33	
	Aggregate ε	-1.45	
Inv. Incentives	γ^c	0	
	$\gamma^{\mathcal{S}}$	0	
Fees	Avg. ad val fee	0.23	
	Avg. unit fee	2.35	
	Total fee rate	0.38	

Step 3: Estimate supply parameters

		All subcategories		
Parameter		$\gamma^{j}=0$	Mean	Median
	$arepsilon_{\sf own}$	-5.85	-5.50	-4.90
Elasticities	Outside div, θ	0.33	0.32	0.29
	Aggregate $arepsilon$	-1.45	-1.30	-1.17
Inv. Incentives	γ^c	0	1.04	1.11
	$\gamma^{\mathcal{S}}$	0	0.39	0.20
Fees	Avg. ad val fee	0.23	0.12	0.12
	Avg. unit fee	2.35	1.70	1.33
	Total fee rate	0.38	0.23	0.22

Sample Counterfactual: Structural Separation

		Base	Struc. Sep
	Avg. ad val fee	0.22	0.20
Fees	Avg. unit fee	0.65	1.83
	Total fee rate	0.24	0.29
	3P mark-up	0.31	0.31
Mark-ups	WH mark-up	0.53	0.61
	1P mark-up	0.39	0.28
	Total share	0.31	0.28
Share	% 1P	0.38	0.47
	% FbA	0.40	0.36
	Consumers		-0.62
	Sellers		-0.04
Δ Surplus	Manufacturers		0.08
	Amazon		-0.04
	Total		-0.62

Other counterfactuals

		$\gamma^j=0$	Struc. Sep	Ban 1P	Comp. Fulf.
	Consumers	-1.98	-0.19	-0.03	0.15
	Sellers	-0.11	-0.06	0.11	0.00
∆Surplus	Manufacturers	-0.08	0.04	-0.14	0.00
	Amazon	0.20	0.00	0.04	-0.07
	Total	-1.97	-0.21	-0.01	0.08

More to come!

Conclusion

- 1. Interventions induce an endogenous response of fees
- 2. Interventions have important distributional consequences
- 3. Hybrid business models are not a priori harmful
 - Given estimated γ's, gains from internalization >> foreclosure incentives
 - If γ 's decline further, separations may increase welfare
- 4. Consumers value Prime and product variety
- Bundling of Prime with Fulfilment+Advertising is key to Amazon's business

Thank you!

References

Lam, H. T. (2021). Platform search design and market power.

Lee, K.-H. and L. Mussolff (2021). Entry into two-sided markets shaped by platform-guided search.

Raval, D. (2022). Steering in one click: Platform self-preferencing in the amazon buy box.